Capacity Building: STEM to STEAM in South Carolina

The broadcast will begin at 3:30 PM ET. If you are having difficulty streaming the video, refreshing the web page at 3:30 PM may resolve this issue. An archived version of the show will be available. If you experience trouble streaming, please email We will try to get you up and watching as quickly as possible!

Webcast Details

Aired on: November 10th, 2015

3:30–4:30 p.m. (ET)

Presentation Slides

Resources PDF

How to Interact with the Show


Tweet @NDPCn or #NDPCn during the show.

Sign into the Disqus forums at the bottom of this page with your Facebook, Twitter, or Google account to post comments and ask questions.

Our Guest(s) This Week

Dr. Cassie Quigley

Dr. Cassie Quigley is an Assistant Professor of Science Education in the Department of Teaching and Learning in the Eugene T. Moore School of Education at Clemson University. Dr. Quigley received her PhD in Curriculum & Instruction at Indiana University in Bloomington, IN. Her research focuses on broadening the conceptions of, and participation in, science and led to her interest in STEAM teaching. Dr. Quigley also teaches in the MAT Middle Level program, which is a one-year MA and initial certification program for middle school teachers. In this program, Dr. Quigley teaches science methods, environmental science, and other foundational courses.  

Dr. Danielle Herro

Dr. Danielle Herro is an Assistant Professor of Digital Media and Learning in the Eugene T. Moore School of Education at Clemson University. Dr. Herro is an Edmund W. Gordon/MacArthur Foundation Fellow for 21st Century Learning and Assessment, and an invited Playful Learning Fellow. Dr. Herro, who earned her PhD in Curriculum & Instruction at the University of Wisconsin-Madison, teaches about social media, games, and emerging technologies. She codesigned and opened Digital Media and Learning and Gaming Labs at Clemson. Her current research involves investigating stealth assessment in games, the efficacy of teacher professional development in integrating digital media in STEAM activities, and fostering computational thinking practices in adolescents.

This Week's Topic

By 2018, an estimated 81,000 STEM jobs will need to be filled in South Carolina. Despite an increase in STEM majors, however, students are not choosing STEM fields. Instead, they are selecting more “transdisciplinary” fields that include the arts. An innovative educational practice called STEAM (where “A” represents the arts) is helping students see the creative and imaginative parts of STEM and increasing their engagement in STEM. The development of an interdisciplinary STEAM ecosystem—including schools, families, businesses, and community members—is being led by a team of Clemson University faculty. The effort aims to increase the participation of South Carolinians in STEM, beginning in elementary school.

“Capacity Building: STEM to STEAM in South Carolina” will focus on:


  • the importance of deepening the content knowledge of teachers, parents, caregivers, and business partners, and why they are all invested in the success of building the STEAM Ecosystem;
  • how underserved and high-needs school districts will be incorporated into STEAM to ensure that the workforce reflects the state’s changing demographics; and
  • how the initiative will create the nation’s first STEAM Teaching Endorsement.

Tweet about this broadcast using #STEAM or at @NDPCn, @CUScienceEdProf, @daniherro.


Presentation Notes  pdf
Whether you are looking for resources on integrating science, technology, engineering, and math or on infusing the arts to transform STEM into STEAM, this curated compilation will help you strategize around different approaches to integrated studies.
This South Carolina NPR special series explores the unexpected intersections of art and science.
Interactive tools and simulation environments that enable and encourage exploration and discovery through observation, conjecture, and modeling activities.
This guide introduces girls in grades 9-12 to young women engineers and highlights careers.
All 38 K-12 STEM programs included in this report provide challenging content/curriculum, an inquiry-learning environment, defined outcomes/assessment, and sustained commitment/community support.
Downloadable posters, educator guides with activities and age-appropriate career information for your students. All activities meet national education standards of learning for math, science and technical literacy.
A host of free STEM resources for students and teachers from Pre-K to high school.

Alliance for Science & Technology Research in America. (2015). Telling our story through data: ASTRA’s STEM on the Hill state STEM & innovation report cards 2015. Washington, DC: Author. Retrieved from

Bidwell, A. (2014). Report: STEM job market much larger than previously reported. US News and World Report, pp. 1. Retrieved from

Cross, N. (2001). Designerly ways of knowing: Design discipline versus design science. Design Issues, 17(3), 49-55. Retrieved from

Dede, C., & Richards, J. (Eds.). (2012). Digital teaching platforms: Customizing classroom learning for each student. New York, New York: Teachers College Press.

Delaney, M. (2014, April). Schools shift from STEM to STEAM. EdTech. Retrieved from

Diamond, B. S., Maerten‐Rivera, J., Rohrer, R. E., & Lee, O. (2014). Effectiveness of a curricular and professional development intervention at improving elementary teachers’ science content knowledge and student achievement outcomes: Year 1 results. Journal of Research in Science Teaching, 51(5), 635-658. Retrieved from

Ertmer, P. A., & Simons, K. D. (2006). Jumping the PBL implementation hurdle: Supporting the efforts of K–12 teachers. Interdisciplinary Journal of Problem-Based Learning, 1(1), 5. Retrieved from

Friedman, L. N. (2013, December 11). How a learning gap grows. Education Week.
Retrieved from

Hew, K. F., & Brush, T. (2007). Integrating technology into K-12 teaching and learning: Current knowledge gaps and recommendations for future research. Educational Technology Research and Development, 55(3), 223-252.Retrieved from

Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational Psychology Review, 16(3), 235-266. Retrieved from

International Society for Technology in Education. (2007). Standards for students. Retrieved from

Johnson, L., Adams Becker, S., Estrada, V., and Freeman, A. (2015). NMC horizon report: 2015 K-12 edition. Austin, Texas: The New Media Consortium. Retrieved from pdf

King, H. (2011). Connecting in-school and out-of-school learning experiences (ISE Research Brief). Retrieved from

Krajcik, J. (2015). Project-based science. The Science Teacher, 82(1), 25. Retrieved from

Lee, K. T., & Nason, R. A. (2013). The recruitment of STEM-talented students into teacher education programs. International Journal of Engineering Education, 29(4), 833-838. Retrieved from pdf

National Science Board. (2014). Science and engineering indicators 2014. Arlington VA: National Science Foundation (NSB 14-01). Retrieved from

Traphagen, K., & Traill, S. (2014). Report from the field: How cross-sector collaborations are advancing STEM learning. Los Altos, CA: NOYCE Foundation. Retrieved from pdf

Zucker, A. (2015). Regional education report: A baseline report on public education in the Tri-County Region. Charleston, SC: Tri-County Cradle to Career Collaborative. Retrieved from

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors